
Proc. of the 8th Int. Conference on Digital Audio Effects (DAFx’05), Madrid, Spain, September 20-22, 2005

FEAPI: A LOW LEVEL FEATURE EXTRACTION PLUGIN API

Alexander Lerch

zplane.development
Berlin, Germany

lerch@zplane.de

Gunnar Eisenberg

Communication Systems Group
Technical University of Berlin, Germany
eisenberg@nue.tu-berlin.de

Koen Tanghe

IPEM - Department of Musicology
Ghent University, Belgium

Koen.Tanghe@UGent.be

ABSTRACT
This paper presents FEAPI, an easy-to-use platform-independent
plugin application programming interface (API) for the extraction
of low level features from audio in PCM format in the context of
music information retrieval software. The need for and advantages
of using an open and well-defined plugin interface are outlined in
this paper and an overview of the API itself and its usage is given.

1. INTRODUCTION

An increasingly important branch of music information retrieval
(MIR) research deals with the extraction of musical content from
audio data, in a way that it can be used e.g. for organizing or
searching music databases. A first step towards that end is ex-
tracting low level features from the musical audio signal that can
then serve as building blocks for constructing higher level, more
semantically meaningful properties of the music.

A low level feature can thus be defined as one or more val-
ues extracted from the audio signal that can be used to describe
a property of the signal but is not necessarily musically or musi-
cologically meaningful all by itself. A few typical examples of
such features are: spectral centroid, energy envelope in multiple
frequency bands, MFCC’s, etc.

Many applications in the MIR field require a large number
of these features to be extracted from the audio signal. Different
applications or research projects are using very similar or identical
low level features, but they all use their own implementation of
well-known and often not algorithmically complex features. A lot
of redundant work is being done to ”reinvent the wheel” each time.
Furthermore, the integration of already implemented features in a
new application is usually time-consuming even if the source code
is available, and almost impossible if this is not the case.

A plugin is considered to be a library that can be linked dy-
namically at runtime with a previously defined interface. For the
host, using a plugin means to load the library and to use the ex-
ported functions during runtime.

A commonly accepted plugin API would enable the reuse of
already implemented features without additional work. Further-
more, feature extraction plugins could easily be exchanged be-
tween projects, researchers and companies, if required also in bi-
nary format to protect the intellectual property of the development

party. A well-defined API can also speed up the development pro-
cess, since the implementation can focus more on the algorithmic
aspects and less on implementation issues like API design. The
presented API tries to provide all means for developers to enable
these advantages.

1.1. Overview

After a short overview of some related work, the remainder of this
paper deals with the following aspects of the proposed feature ex-
traction plugin API:

• requirements and considerations

• design and architecture

• usage

• software development kit (SDK)

• license

A summary of the most important properties of the presented API
is then given and the goals for further development and mainte-
nance are outlined. Pointers to more detailed information are pro-
vided at the end.

2. RELATED WORK

To the best of our knowledge, there is currently no widely accepted
audio feature extraction plugin API in use by the MIR community.

Marsyas [1] is an audio analysis and synthesis framework with
an emphasis on MIR and allows a user to extend the framework
by deriving from a base class tightly integrated in the framework.
As such, it does not define a true feature extraction plugin API.
Maaate! [2] is an audio analysis toolkit that provides a plugin in-
terface, but has a strong focus on processing MPEG sound files.
Both are licensed under the GNU General Public License (GPL)
[3], thus enforcing the publication of source code for all plugin or
host implementations, which may prevent them from being used
in a commercial context where source code distribution is not ap-
propriate.

Besides these MIR-related APIs, several plugin APIs are com-
monly used in the world of audio signal processing and virtual in-
struments. These APIs are mainly designed for transforming an

DAFX-1

http://www.zplane.de
mailto:lerch@zplane.de
http://www.nue.tu-berlin.de
mailto:eisenberg@nue.tu-berlin.de
http://www.ipem.ugent.be
mailto:Koen.Tanghe@UGent.be

Proc. of the 8th Int. Conference on Digital Audio Effects (DAFx’05), Madrid, Spain, September 20-22, 2005

audio stream into a new audio stream (effect processing) or for
generating an audio stream in reaction to incoming MIDI events
(virtual instruments). They are not easily adaptable to the demands
of audio feature extraction. Examples of such APIs are LADSPA
(Linux Audio Developer’s Simple Plugin API) [4], VST (Virtual
Studio Technology by Steinberg) [5] and AU (Audio Units by Ap-
ple) [6]. Some influences from these API designs can be found in
the presented API.

The VST-SDK additionally provides an offline extension al-
lowing audio data analysis. This extension could basically be used
for feature extraction. While this has the advantage of compatibil-
ity with some already available hosts, we see the following disad-
vantages that make the definition of a dedicated feature extraction
plugin API reasonable:

• restriction of capabilities: the offline interface is per def-
inition not able to handle audio streams, only audio files.
Furthermore it is not easy to handle or store large and com-
plex feature sets.

• complexity of plug-in implementation: the API requires
working with audio file handles, and there is a bidirectional
communication between plugin and host

• non-open license: the definition of the future capabilities
and extensions is under control of a company and there-
fore cannot easily be influenced by the requirements of re-
searchers. Open source projects are not allowed to dis-
tribute the source files of the SDK with their code, so in the
case of source code distribution every possible user has to
sign an individual license agreement with the license holder

3. FEATURE EXTRACTION PLUGIN API

3.1. Requirements and Considerations

Every attempt to specify an application programming interface de-
mands a careful consideration of the required functionality and ca-
pabilities as well as of usability and simplicity. Usually, a com-
promise between capabilities and ease of use has to be found since
they somehow contradict each other. The (non-trivial) technical
requirements for the capabilities of the feature extraction plugin
API were defined as:

• support for different and possibly varying sample rates of
the extracted features

• support for multiple independent instances of each plugin

• support for multidimensional features

• high probability of unique plugin identification by the host
without a registration process

• support for the calculation of multiple features in one plu-
gin, if required by the developer

• support for sufficient timing information to allow synchro-
nization of features with different sample rates

• push-style processing of audio buffers (data source can be
anything: files, live streams, ...)

The following restrictions were agreed upon to allow for simple
usage and implementation of the API. They can have both techni-
cal and usability reasons:

• memory allocated internally by the plugin is never used out-
side the plugin, and shared memory has to be allocated by
the host

• the plugin can not call host functions, i.e. the host has to
poll for status requests etc.

• no file handles etc. are used in the API

• no developer-specified graphical user interface (GUI) is re-
quired to run the plugin

• only one data type (namely float) for inputs, outputs and
parameters

• no thread safety of the API, i.e. the host has to ensure that
e.g. the request for results does not interfere with a running
process call

To ensure cross-platform compatibility and integration in as much
programming languages as possible, the plugin interface was cho-
sen to be defined in the programming language C. C and C++
are commonly used by researchers and companies in an audio sig-
nal processing context and compilers are available for nearly all
possible target platforms. Besides the API itself, a software de-
velopment kit (SDK) providing C++ wrapper classes is available.
These classes allow easy access to a plugin from the host side as
well as easy implementation of plugins by inheriting from a base
class plugin on the plugin side.

3.2. Design and Architecture

Basically, the API provides two types of data inputs/outputs, called
signal and parameter. Both have to be of the data type float.
A signal, whose properties can be requested with the help of the
structure depicted in Figure 1, can be both an input or a result. In-
put signals, which are commonly thought to be audio signals, are
restricted to a constant sample rate. Parameters are used to change
the plugin properties. Parameter properties are defined by means
of the structure depicted in Figure 2. Both structures provide ex-
tensive plain text information, information about their range and
their quantization as well as other useful data.

The input signal is passed to the plugin by simply pushing new
buffers of data to the process function. The host can poll for new
results at any time, taking into account the thread safety issues
mentioned above.

Plugins can be distinguished by a quintuple of information:
the library name itself, the plugin name string, the plugin vendor
string, the vendor-specific plugin ID and the vendor-specific plugin
version info.

typedef struct FEAPI_SignalDescription_t_tag
{

char acName[1024];
char acUnit[1024];
char acDescription[4096];
float fRangeMin;
float fRangeMax;
float fQuantizedTo;
float fSampleRate;

} FEAPI_SignalDescription_t;

Figure 1: structure for the description of result properties

DAFX-2

Proc. of the 8th Int. Conference on Digital Audio Effects (DAFx’05), Madrid, Spain, September 20-22, 2005

Figure 3: SDK wrappers for the host side and the plugin side together with function / method calls

typedef struct FEAPI_ParameterDescription_t_tag
{

char acName[1024];
char acUnit[1024];
char acDescription[4096];
float fRangeMin,

fRangeMax,
fDefaultValue;

float fQuantizedTo;
int bIsChangeableInRealTime;

} FEAPI_ParameterDescription_t;

Figure 2: structure for the description of parameter properties

3.3. Usage

Using a feature extraction plugin requires the following actions,
that are also summarized in Figure 3:

FEAPI_CreatePluginInstance() has to be called to
create a new instance of the plugin and let it do some very basic
internal initialization.

The functions FEAPI_GetPluginAPIVersion() and
FEAPI_GetPluginCanDo() allow the host to retrieve some
plugin-specific information like API version, supported number of
channels or supported sample rates. This information can be used
by the host to decide whether it supports this type of plugin or not,
and if it does, to call the plugin in the correct way.

The call of FEAPI_InitializePlugin() is required to
initialize the plugin with the non-varying parameters, the input
sample rate and the number of audio channels. CPU-intensive cal-
culations necessary for internal initialization of buffers, filters, etc.
should be done here too. Furthermore, some vendor-specific user
data can be handed over to the plugin. If initialization fails, the
plugin can not be used and the host has to destroy the plugin in-
stance.

To retrieve information about the available plugin
parameters and the calculated features, the functions
FEAPI_GetPluginResultDescription() and
FEAPI_GetPluginParameterDescription() can
be used. Figures 1 and 2 provide some insight about the available
information.

FEAPI_ProcessPlugin() is the function that performs
the actual processing. The host simply needs to maintain a contin-
uous stream of audio data blocks that are handed over to the plugin
by calling this function. Additionally, a time stamp for the input
data is passed along.

The host can then check whether a result is available
or not. If so, it can check its size and the function
FEAPI_GetPluginResult() can be called to obtain the re-
sult. A time stamp for the result is returned as well.

When no more audio data is available for processing,
FEAPI_ProcessPluginDone() has to be called to signal the
plugin that all processing is done and allow it to do some final pro-
cessing based on what it has left in its internal buffers if needed.

Finally, FEAPI_DestroyPluginInstance() destroys
the plugin instance.

Besides these functions, there are a few other ones which are

DAFX-3

Proc. of the 8th Int. Conference on Digital Audio Effects (DAFx’05), Madrid, Spain, September 20-22, 2005

explained on the FEAPI website [7] together with more in-depth
documentation on the API in general.

3.4. Software Development Kit

The API itself consists of a C header file containing typedef def-
initions of all data types that are passed through the interface and
all functions which a plugin must provide. Together with the ac-
tual API, a C++ SDK has been developed which wraps all the
functions of the plugins and the API in C++ classes. With these
wrappers, a FEAPI plugin instance can be handled as a C++ ob-
ject. The specific plugin class is derived from a plugin base class
(FEAPI CPluginBaseClass). The methods provided by the base
class, directly representing the functions specified by the API, are
reimplemented by the specific plugin class. This structure is sim-
ilar to VST and allows a very easy and fast plugin development
process. The methods of the plugin object are called by C-style
stub functions which are also provided by the SDK. These stub
functions do nothing more than translating the C function calls
into C++ method calls.

The SDK also provides a wrapper class for host development.
This class allows an easy-to-use handling of plugin libraries and
the plugin instances themselves. The class (FEAPI CPlugin) mir-
rors all methods which are provided by the plugin base class. With
this class it appears as if the actual plugin object would have been
created directly inside the host without the linking of a library.

Figure 3 shows how the SDK wraps the C-function calls and
thus simplifies the usage of a plugin from a host. The parts pro-
grammed in C and programmed in C++ are clearly separated and
the border between the host’s and the plugin’s side is displayed.
Note that only the most important functions and methods are dis-
played.

3.5. License

In order to have the API accepted as widely as possible, an appro-
priate license for the provided API source code had to be consid-
ered. The source code is licensed under a BSD-style license [8],
which is a simple, permissive and widely spread license. At the
same time, the BSD license is compatible with the GNU GPL [3]
and the sources can be used, although under some minor restric-
tions, in commercial applications as well.

4. SUMMARY AND CONCLUSIONS

The presented API offers a solution for the technical requirements
of low level feature extraction in an MIR context, as well as plat-
form independence, a simple interface and an open license. The
API provides a push-style interface allowing live streams as well
as file streams. It supports multidimensional features to be ex-
tracted with constant as well as varying sample rates and provides
sufficient information for the time synchronization of audio and
features.The provided SDK, including an example plugin and host,
should allow a fast learning curve. To broaden the acceptance for
the usage in as many MIR-applications as possible, the establish-
ment of a database of plugins (in source and/or binary format) for
common usage is planned.

To ensure that the API and the related source code are eas-
ily available, a project has been started on SourceForge.net [7].
SourceForge provides several useful software management ser-
vices like CVS, bug tracking, mailing lists etc. Source code and in-

depth information about the presented API is available for down-
load, and we encourage motivated developers in the MIR R&D
field to contribute to the project by becoming an active project de-
veloper or by participating in the mailing list discussions.

5. ACKNOWLEDGEMENTS

We would like to thank Stefan Weinzierl from the Department of
Communication Research and Thomas Sikora from the Commu-
nication Systems Group, both Technical University of Berlin, for
their ongoing support.

Some parts of this work were done in the context of the MAMI
project which is funded by the Flemish Institute for the Promotion
of Scientific and Technical Research in Industry.

6. REFERENCES

[1] George Tzanetakis and Perry Cook, “MARSYAS: A Frame-
work for Audio Analysis,” Organised Sound, vol. 4, no. 3,
2000.

[2] Silvia Pfeiffer and Conrad Parker, “bewdy, Maaate!,” in Pre-
sentation at the Australian Linux Conference, Sydney, January
2001.

[3] Free Software Foundation, Inc., “GNU General Public Li-
cense,” Available:http://www.gnu.org/licenses/
gpl.html, last time checked: 2005 July 7th.

[4] Richard Furse, “LADSPA,” Available:http://www.
ladpsa.org, last time checked: 2005 July 7th.

[5] Steinberg AG, “Virtual Studio Technology,” Avail-
able:http://ygrabit.steinberg.de, last time
checked: 2005 July 7th.

[6] Apple Computer, Inc., “Audio Units,” Avail-
able:http://developer.apple.com/audio/
audiounits.html, last time checked: 2005 July 7th.

[7] Alexander Lerch, Gunnar Eisenberg and Koen Tanghe,
“FEAPI,” Available:http://www.sf.net/projects/
feapi, last time checked: 2005 July 7th.

[8] Open Source Initiative, “BSD License,” Avail-
able:http://www.opensource.org/licenses/
bsd-license.php, last time checked: 2005 July 7th.

DAFX-4

http://www.gnu.org/licenses/gpl.html
http://www.gnu.org/licenses/gpl.html
http://www.ladpsa.org
http://www.ladpsa.org
http://ygrabit.steinberg.de
http://developer.apple.com/audio/audiounits.html
http://developer.apple.com/audio/audiounits.html
http://www.sf.net/projects/feapi
http://www.sf.net/projects/feapi
http://www.opensource.org/licenses/bsd-license.php
http://www.opensource.org/licenses/bsd-license.php

	1 Introduction
	1.1 Overview

	2 Related Work
	3 Feature Extraction Plugin API
	3.1 Requirements and Considerations
	3.2 Design and Architecture
	3.3 Usage
	3.4 Software Development Kit
	3.5 License

	4 Summary and Conclusions
	5 Acknowledgements
	6 References

